
Using Namespaces
By Alex Allain

One of C++'s less heralded additions is addition of namespaces, which can be used to structure a
program into "logical units". A namespace functions in the same way that a company division might
function -- inside a namespace you include all functions appropriate for fulfilling a certain goal. For
instance, if you had a program that connected to the Internet, you might have a namespace to handle
all connection functions:

namespace net_connect
{
 int make_connection();
 int test_connection();
 //so forth...
}

You can then refer to functions that are part of a namespace by prefixing the function with the
namespace name followed by the scope operator -- ::. For instance,

net_connect::make_connection()

By enabling this program structure, C++ makes it easier for you to divide up a program into groups
that each perform their own separate functions, in the same way that classes or structs simplify object
oriented design. But namespaces, unlike classes, do not require instantiation; you do not need an
object to use a specific namespace. You only need to prefix the function you wish to call with
namespace_name:: -- similar to how you would call a static member function of a class.

Another convenience of namespaces is that they allow you to use the same function name, when it
makes sense to do so, to perform multiple different actions. For instance, if you were implementing a
low-level IO routine and a higher level IO routine that uses that lower level IO, you might want to have
the option of having two different functions named "input" -- one that handles low-level keyboard IO
and one that handles converting that IO into the proper data type and setting its value to a variable of
the proper type.

So far, when we've wanted to use a namespace, we've had to refer to the functions within the
namespace by including the namespace identifier followed by the scope operator. You can, however,
introduce an entire namespace into a section of code by using a using-directive with the syntax

using namespace namespace_name;

Doing so will allow the programmer to call functions from within the namespace without having to
specify the namespace of the function while in the current scope. (Generally, until the next closing
bracket, or the entire file, if you aren't inside a block of code.) This convenience can be abused by
using a namespace globally, which defeats some of the purpose of using a namespace. A common
example of this usage is

using namespace std;

which grants access to the std namespace that includes C++ I/O objects cout and cin.

Finally, you can introduce only specific members of a namespace using a using-declaration with the
syntax

using namespace_name::thing;

https://plus.google.com/113987539774523532573?rel=author

One trick with namespaces is to use an unnamed namespace to avoid naming conflicts. To do so,
simply declare a namespace with the normal syntax, but leave off the identifier; when this is done, you
will have

namespace

{

 //functions

}

and within the namespace you are assured that no global names will conflict because each
namespace's function names take precedence over outside function names.

Now, you might ask, how can you actually use anything in that namespace? When your program is
compiled, the "anonymous" namespace you have created will be accessible within the file you created
it in. In effect, it's as though an additional "using" clause was included implicitly. This effectively limits
the scope of anything in the namespace to the file level (so you can't call the functions in that
namespace from another other file). This is comparable to the effect of the static keyword.

Renaming namespaces
Finally, if you just don't feel like typing the entire name of namespace, but you're trying to keep to a
good style and not use the using keyword, you can rename a namespace to reduce the typing:

namespace <new> = <old>

Related articles
The many uses of the static keyword in C and C++

http://www.cprogramming.com/tutorial/statickeyword.html
http://www.cprogramming.com/tutorial/statickeyword.html

Namespaces

Namespaces provide a method for preventing name conflicts in large
projects.

Symbols declared inside a namespace block are placed in a named scope
that prevents them from being mistaken for identically-named symbols in
other scopes.

Multiple namespace blocks with the same name are allowed. All declarations
within those blocks are declared in the named scope.

 Syntax
namespace ns_name {
declarations }

(1
)

inline namespace ns_name {
declarations }

(2
)

(since C+
+11)

namespace { declarations }
(3
)

ns_name::name
(4
)

using namespace ns_name;
(5
)

using ns_name::name;
(6
)

namespace name = qualified-
namespace ;

(7
)

namespace ns_name::name
(8
)

(since C+
+17)

1) Named namespace definition for the namespace ns_name.

2) Inline namespace definition for the namespace ns_name. Declarations
inside ns_name will be visible in its enclosing namespace.

3) Unnamed namespace definition. Its members have potential scope from
their point of declaration to the end of the translation unit, and have internal
linkage.

4) Namespace names (along with class names) can appear on the left hand
side of the scope resolution operator, as part of qualified name lookup.

5) using-directive: From the point of view of unqualified name lookup of any
name after a using-directive and until the end of the scope in which it
appears, every name from ns_name is visible as if it were declared in the
nearest enclosing namespace which contains both the using-directive and
ns_name.

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/namespace#Using-directives
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/storage_duration
http://en.cppreference.com/w/cpp/language/storage_duration
http://en.cppreference.com/w/cpp/language/namespace#Unnamed_namespaces
http://en.cppreference.com/w/cpp/language/namespace#Inline_namespaces
http://en.cppreference.com/w/cpp/language/namespace#Namespaces

6) using-declaration: makes the symbol name from the namespace ns_name
accessible for unqualified lookup as if declared in the same class scope,
block scope, or namespace as where this using-declaration appears.

7) namespace-alias-definition: makes name a synonym for another
namespace: see namespace alias

8) nested namespace definition: namespace A::B::C { is equivalent to
namespace A { namespace B { namespace C {

 Explanation

 Namespaces

inline(optional) namespace attr(optional) identifier {
namespace-body }

inline -
if present, makes this an inline namespace (see below). Cannot
appear on the extension-namespace-definition if the original-
namespace-definition did not use inline

attr(C++17) - optional sequence of any number of attributes

identifier -

either a previously unused identifier, in which case this is
original-namespace-definition or the name of a namespace, in
which case this is extension-namespace-definition or a sequence
of enclosing namespace specifiers separated by ::, ending with
identifier, in which case this is a nested-namespace-definition
(since C++17)

namespac
e-body

-
possibly empty sequence of declarations of any kind (including
class and function definitions as well as nested namespaces)

Namespace definitions are only allowed at namespace scope, including the
global scope.

To reopen an existing namespace (formally, to be an extension-namespace-
definition), the lookup for the identifier used in the namespace definition
must resolve to a namespace name (not a namespace alias), that was
declared as a member of the enclosing namespace or of an inline namespace
within an enclosing namespace.

The namespace-body defines a namespace scope, which affects name
lookup.

All names introduced by the declarations that appear within namespace-
body (including nested namespace definitions) become members of the
namespace identifier, whether this namespace definition is the original
namespace definition (which introduced identifier), or an extension
namespace definition (which "reopened" the already defined namespace)

A namespace member that was declared within a namespace body may be
defined or redeclared outside of it using explicit qualification

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/scope
http://en.cppreference.com/w/cpp/language/declarations
http://en.cppreference.com/w/cpp/language/attributes
http://en.cppreference.com/w/cpp/language/namespace_alias
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/namespace#Using-declarations

namespace Q {

 namespace V { // V is a member of Q, and is fully defined within Q

// namespace Q::V { // C++17 alternative to the above two lines

 class C { void m(); }; // C is a member of V and is fully defined within
V

 // C::m is only declared

 void f(); // f is a member of V, but is only declared here

 }

 void V::f() // definition of V's member f outside of V

 // f's enclosing namespaces are still the global namespace, Q,
and Q::V

 {

 extern void h(); // This declares ::Q::V::h

 }

 void V::C::m() // definition of V::C::m outside of the namespace (and the
class body)

 // enclosing namespaces are the global namespace, Q, and
Q::V

 {

 }

}

Out-of-namespace definitions and redeclarations are only allowed after the
point of declaration, only at namespace scope, and only in namespaces that
enclose the original namespace (including the global namespace) and they
must use qualified-id syntax (since C++14)

namespace Q {

 namespace V { // original-namespace-definition for V

 void f(); // declaration of Q::V::f

 }

 void V::f() {} // OK

 void V::g() {} // Error: g() is not yet a member of V

 namespace V { // extension-namespace-definition for V

 void g(); // declaration of Q::V::g

 }

}

namespace R { // not a enclosing namespace for Q

 void Q::V::g() {} // Error: cannot define Q::V::g inside R

}

void Q::V::g() {} // OK: global namespace encloses Q

Names introduced by friend declarations within a non-local class X become
members of the innermost enclosing namespace of X, but they do not
become visible to lookup (neither unqualified nor qualified) unless a
matching declaration is provided at namespace scope, either before or after
the class definition. Such name may be found through ADL which considers
both namespaces and classes.

Only the innermost enclosing namespace is considered by such friend
declaration when deciding whether the name would conflict with a previously
declared name.

void h(int);

namespace A {

 class X {

 friend void f(X); // A::f is a friend

 class Y {

 friend void g(); // A::g is a friend

 friend void h(int); // A::h is a friend, no conflict with ::h

 };

 };

 // A::f, A::g and A::h are not visible at namespace scope

 // even though they are members of the namespace A

 X x;

 void g() { // definition of A::g

 f(x); // A::X::f is found through ADL

 }

 void f(X) {} // definition of A::f

 void h(int) {} // definition of A::h

 // A::f, A::g and A::h are now visible at namespace scope

 // and they are also friends of A::X and A::X::Y

}

Inline namespaces (since
C+

http://en.cppreference.com/w/cpp/language/adl
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/friend

An inline namespace is a namespace that uses the optional keyword
inline in its original-namespace-definition.

Members of an inline namespace are treated as if they are members of
the enclosing namespace in many situations (listed below). This
property is transitive: if a namespace N contains an inline namespace
M, which in turn contains an inline namespace O, then the members of
O can be used as though they were members of M or N.

 A using-directive that names the inline namespace is implicitly
inserted in the enclosing namespace (similar to the implicit
using-directive for the unnamed namespace)

 In argument-dependent lookup, when a namespace is added to
the set of associated namespaces, its inline namespaces are
added as well, and if an inline namespace is added to the list of
associated namespaces, its enclosing namespace is added as
well.

 Each member of an inline namespace can be partially
specialized, explicitly instantiated or explicitly specialized as if it
were a member of the enclosing namespace.

 Qualified name lookup that examines the enclosing namespace
will include the names from the inline namespaces even if the
same name is present in the enclosing namespace.

{ // in C++14, std::literals and its member namespaces are inline

 using namespace std::string_literals; // makes visible operator""s

 // from
std::literals::string_literals

 auto str = "abc"s;

}

{

 using namespace std::literals; // makes visible both

 //
std::literals::string_literals::operator""s

 // and
std::literals::chrono_literals::operator""s

 auto str = "abc"s;

 auto min = 60s;

}

{

 using std::operator""s; // makes both

+11)

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/adl

std::literals::string_literals::operator""s

 // and
std::literals::chrono_literals::operator""s visible

 auto str = "abc"s;

 auto min = 60s;

}

Note: the rule about specializations allows library versioning: different
implementations of a library template may be defined in different
inline namespaces, while still allowing the user to extend the parent
namespace with an explicit specialization of the primary template.

 Unnamed namespaces

The unnamed-namespace-definition is a namespace definition of the form

inline(optional) namespace attr(optional) {
namespace-body }

attr(C+
+17) -

optional sequence of any number of
attributes

This definition is treated as a definition of a namespace with unique name
and a using-directive in the current scope that nominates this unnamed
namespace.

namespace {

 int i; // defines ::(unique)::i

}

void f() {

 i++; // increments ::(unique)::i

}

namespace A {

 namespace {

 int i; // A::(unique)::i

 int j; // A::(unique)::j

 }

 void g() { i++; } // A::unique::i++

}

http://en.cppreference.com/w/cpp/language/attributes

using namespace A; // introduces all names from A into global namespace

void h() {

 i++; // error: ::(unique)::i and ::A::(unique)::i are both in scope

 A::i++; // ok, increments ::A::(unique)::i

 j++; // ok, increments ::A::(unique)::j

}

Even though names in an unnamed namespace may be declared with
external linkage, they are never accessible from other translation units
because their namespace name is unique.

(until
C++11)

Unnamed namespaces as well as all namespaces declared directly or
indirectly within an unnamed namespace have internal linkage, which
means that any name that is declared within an unnamed namespace
has internal linkage.

(since
C++11)

 Using-declarations

Introduces a name that is defined elsewhere into the declarative region
where this using-declaration appears.

using typename(optional) nested-name-specifier
unqualified-id ;

(until C+
+17)

using declarator-list ; (since C+
+17)

nested-
name-
specifier

-
a sequence of names and scope resolution operators ::, ending
with a scope resolution operator. A single :: refers to the global
namespace.

unqualified-
id

- an id-expression

typename -
the keyword typename may be used as necessary to resolve
dependent names, when the using-declaration introduces a
member type from a base class into a class template

declarator-
list

-

comma-separated list of one or more declarators of the form
typename(optional) nested-name-specifier unqualified-id. The last
declarator may be an ellipsis, although that form is only
meaningful in derived class definitions

Using-declarations can be used to introduce namespace members into other
namespaces and block scopes, or to introduce base class members into
derived class definitions.

A using-declaration with more than one using-declarator is equivalent
to a corresponding sequence of using-declarations with one using-

(since
C++17)

http://en.cppreference.com/w/cpp/language/using_declaration
http://en.cppreference.com/w/cpp/language/dependent_name
http://en.cppreference.com/w/cpp/language/identifiers
http://en.cppreference.com/w/cpp/language/storage_duration#Linkage

declarator.

For the use in derived class definitions, see using declaration.

Names introduced into a namespace scope by a using-declaration can be
used just like any other names, including qualified lookup from other scopes:

void f();

namespace A {

 void g();

}

namespace X {

 using ::f; // global f is now visible as ::X::f

 using A::g; // A::g is now visible as ::X::g

 using A::g, A::g; // (C++17) OK: double declaration allowed at namespace
scope

}

void h()

{

 X::f(); // calls ::f

 X::g(); // calls A::g

}

If, after the using-declaration was used to take a member from a namespace,
the namespace is extended and additional declarations for the same name
are introduced, those additional declarations do not become visible through
the using-declaration (in contrast with using-directive). One exception is
when a using-declaration names a class template: partial specializations
introduced later are effectively visible, because their lookup proceeds
through the primary template.

namespace A {

 void f(int);

}

using A::f; // ::f is now a synonym for A::f(int)

namespace A { // namespace extension

 void f(char); // does not change what ::f means

}

void foo() {

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/using_declaration

 f('a'); // calls f(int), even though f(char) exists.

}

void bar() {

 using A::f; // this f is a synonym for both A::f(int) and A::f(char)

 f('a'); // calls f(char)

}

Using-declarations cannot name template-id, namespace, or a scoped
enumerator. Each declarator in a using-declaration introduces one and only
one name, for example using-declaration for an enumeration does not
introduce any of its enumerators.

All restrictions on regular declarations of the same names, hiding, and
overloading rules apply to using-declarations:

namespace A {

 int x;

}

namespace B {

 int i;

 struct g { };

 struct x { };

 void f(int);

 void f(double);

 void g(char); // OK: function name g hides struct g

}

void func() {

 int i;

 using B::i; // error: i declared twice

 void f(char);

 using B::f; // OK: f(char), f(int), f(double) are overloads

 f(3.5); // calls B::f(double)

 using B::g;

 g('a'); // calls B::g(char)

 struct g g1; // declares g1 to have type struct B::g

http://en.cppreference.com/w/cpp/language/enum

 using B::x;

 using A::x; // OK: hides struct B::x

 x = 99; // assigns to A::x

 struct x x1; // declares x1 to have type struct B::x

}

If a function was introduced by a using-declaration, declaring a function with
the same name and parameter list is ill-formed (unless the declaration is for
the same function). If a function template was introduced by a using-
declaration, declaring a function template with the same name, parameter
type list, return type, and template parameter list is ill-formed. Two using-
declarations can introduce functions with the same name and parameter list,
but if a call to that function is attempted, the program is ill-formed.

namespace B {

 void f(int);

 void f(double);

}

namespace C {

 void f(int);

 void f(double);

 void f(char);

}

void h() {

 using B::f; // introduces B::f(int), B::f(double)

 using C::f; // introduces C::f(int), C::f(double), and C::f(char)

 f('h'); // calls C::f(char)

 f(1); // error: B::f(int) or C::f(int)?

 void f(int); // error: f(int) conflicts with C::f(int) and B::f(int)

}

If an entity is declared, but not defined in some inner namespace, and
then declared through using-declaration in the outer namespace, and
then a definition appears in the outer namespace with the same
unqualified name, that definition is a member of the outer namespace
and conflicts with the using-declration:

(since
C+
+14)

namespace X {

 namespace M {

 void g(); // declares, but doesn't define X::M::g()

 }

 using M::g;

 void g(); // Error: attempt to declare X::g which conflicts with
X::M::g()

}

More generally, a declaration that appears in any namespace scope
and introduces a name using an unqualified identifier always
introduces a member into the namespace it's in and not to any other
namespace. The exceptions are explicit instantiations and explicit
specializations of a primary template that is defined in an inline
namespace: because they do not introduce a new name, they may use
unqualified-id in an enclosing namespace.

 Using-directives

A using-directive is a block-declaration with the following syntax:

attr(optional) using namespace nested-name-specifier(optional)
namespace-name ;

(1
)

attr(C++11) - any number of attributes that apply to this using-directive

nested-name-
specifier

-
a sequence of names and scope resolution operators ::,
ending with a scope resolution operator. A single :: refers to
the global namespace.

namespace-
name

-
a name of a namespace. When looking up this name, lookup
considers namespace declarations only

Using-directives are allowed only in namespace scope and in block scope.
From the point of view of unqualified name lookup of any name after a using-
directive and until the end of the scope in which it appears, every name from
namespace-name is visible as if it were declared in the nearest enclosing
namespace which contains both the using-directive and namespace-name.

Using-directive does not add any names to the declarative region in which it
appears (unlike the using-declaration), and thus does not prevent identical
names from being declared.

Using-directives are transitive for the purposes of unqualified lookup: if a
scope contains a using-directive that nominates a namespace-name, which
itself contains using-directive for some namespace-name-2, the effect is as if
the using directives from the second namespace appear within the first. The

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/scope
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/attributes
http://en.cppreference.com/w/cpp/language/declarations

order in which these transitive namespaces occur does not influence name
lookup.

namespace A {

 int i;

}

namespace B {

 int i;

 int j;

 namespace C {

 namespace D {

 using namespace A; // all names from A injected into global
namespace

 int j;

 int k;

 int a = i; // i is B::i, because A::i is hidden by B::i

 }

 using namespace D; // names from D are injected into C

 // names from A are injected into global namespace

 int k = 89; // OK to declare name identical to one introduced by a
using

 int l = k; // ambiguous: C::k or D::k

 int m = i; // ok: B::i hides A::i

 int n = j; // ok: D::j hides B::j

 }

}

If, after a using-directive was used to nominate some namespace, the
namespace is extended an additional members and/or using-directives are
added to it, those additional members and the additional namespaces are
visible through the using-directive (in contrast with using-declaration)

namespace D {

 int d1;

 void f(char);

}

using namespace D; // introduces D::d1, D::f, D::d2, D::f,

 // E::e, and E::f into global namespace!

int d1; // OK: no conflict with D::d1 when declaring

namespace E {

 int e;

 void f(int);

}

namespace D { // namespace extension

 int d2;

 using namespace E; // transitive using-directive

 void f(int);

}

void f() {

 d1++; // error: ambiguous ::d1 or D::d1?

 ::d1++; // OK

 D::d1++; // OK

 d2++; // OK, d2 is D::d2

 e++; // OK: e is E::e due to transitive using

 f(1); // error: ambiguous: D::f(int) or E::f(int)?

 f('a'); // OK: the only f(char) is D::f(char)

}

 Notes

The using-directive using namespace std; at any namespace scope introduces
every name from the namespace std into the global namespace (since the
global namespace is the nearest namespace that contains both std and any
user-declared namespace), which may lead to undesirable name collisions.
This, and other using directives are generally considered bad practice at file
scope of a header file.

 Example

This example shows how to use a namespace to create a class that already
has been named in the std namespace.

Run this code

#include <vector>

namespace vec {

 template< typename T >

 class vector {

 // ...

 };

} // of vec

int main()

{

 std::vector<int> v1; // Standard vector.

 vec::vector<int> v2; // User defined vector.

 v1 = v2; // Error: v1 and v2 are different object's type.

 {

 using namespace std;

 vector<int> v3; // Same as std::vector

 v1 = v3; // OK

 }

 {

 using vec::vector;

 vector<int> v4; // Same as vec::vector

 v2 = v4; // OK

 }

 return 0;

}

 Defect reports

The following behavior-changing defect reports were applied retroactively to
previously published C++ standards.

http://en.cppreference.com/w/cpp/container/vector

	Using Namespaces
	Renaming namespaces

	Namespaces
	[edit] Syntax
	[edit] Explanation
	[edit] Namespaces
	Inline namespaces
	[edit] Unnamed namespaces
	[edit] Using-declarations
	[edit] Using-directives

	[edit] Notes
	[edit] Example
	[edit] Defect reports

